

Energy Transition in Chemicals Turning Heat and Cooling into Green Assets

Applications

Multi Energy To Multi Utility Partner-Absorption Chillers

Chilling only **CHILLER** -5°C Chilled Water / Brine 1°C Pure Water

Chilling: Primary Heating: Secondary SIMULTANEOUS CHILLER HEATER 0°C to 35°C Chilled Water 35°C to 90°C Hot Water

Heating: Primary Chilling: Secondary SIMULTANEOUS HEAT PUMP CHILLER 5 °C to 35 °C Chilled Water Up to 95°C Hot Water

Heating: Primary Chilling: Secondary CHILLER HEAT PUMP Up to 90°C Hot Water & 5 °C to 35 °C Chilled Water

Heating only **HEAT PUMP** Up to 170°C Hot Water

Conserving Resources, Preserving the Future.

LIVE ENERGY

STEAM: 0 bar(g) - 25 bar(g) Hot Water: 60°C - 250°C THERMIC FLUID: 150°C - 350°C DIRECT FUEL FIRING : PROPANE / BIOGAS LPG/ Natural Gas / Diesel

RECOVERED WASTE HEAT

FLUE GASES: From Engines / Turbines / Furnaces HOT WATER: From Engine / Heat Recovery Unit / Compressor 60°C-220°C

PROCESS INDUCED WASTE HEAT

VAPOUR: From Chemical Reactor / Polymerization Column / Potato Chips or Noodles Fryer

RENEWABLE HOT WATER

Geothermal / Solar

₩ (4) Coll * UTILITY **ENERGY SOURC** 111 \$55 1

Case Study-Absorption Chiller for a Chemical Major

A specialty chemical plant faced high electricity costs due to conventional chillers and had unused waste steam from its processes.

Solution

- To address these issues, the company collaborated with Thermax to implement steam-fired absorption chiller.
- This system was designed to harness waste steam generated within the plant to produce chilled water for process applications, effectively converting unused thermal energy into a productive resource.
- The adoption of absorption technology allowed the plant to drastically reduce its dependence on electrical chillers.

Result: The plant saw a 55% reduction in electricity consumption for cooling, leading to annual energy savings and reduction in carbon emissions by a significant margin

THERMAX

Heat Pumps-Product Basket

Absorption Heat Pump Energy savings Up to 40%

- Water Savings: 60%
- Heating Capacity: 0.25MW-40MW
- Hot Water Output: Upto 110°C
- CO2 Reduction: Upto 90%
- Steam Pressure: 2-10 bar
- COP: 1.7 -1.8

Electrical Heat Pump Achieve Maximum Operational Savings

- Heating Capacity: 0.2MW-3MW per single unit
- Hot Water Output: Upto 120°C
- Energy Savings up to 80%
- Simultaneous Cooling generation capacity Upto 60%
- COP: 1.8 6
- Types: Air Source and Water Source

THERMAX

Hybrid Heat Pump Achieve 40% cost savings

- Heating Capacity: 0.4MW and above
- Hot Water Output: Upto 120°C
- Water Savings: Upto 30%
- Direct Fuels Savings: Upto 40%
- Simultaneous Cooling generation capacity Upto 30%

Case Study-Hybrid Heat Pump for a Chemical Major

To reduce higher water, steam consumption and substantial carbon emissions

Solution

- Thermax's hybrid heat pump generates hot water (110°C) while simultaneously producing cooling, reducing the need for energy-intensive steam generation.
- The system replaces traditional steam-based heating with more efficient heat pump operation, saving steam and energy.
- Plate Heat Exchangers (PHEs) are now on standby, and the heat pump runs continuously, optimizing energy use

Steam Saving – 3,341 Tonnes per annum

Water Savings – 2,841 m3/annum

Result: Reduction in operational costs by 52 lakhs per annum with reduced carbon footprint of 519 tonnes per annum

THERMAX

Hybrid Closed Loop Cooling Tower

Salient Features

- Can be operated for higher temperature difference (ΔT)
- Zero contamination due to closed loop
- Capacity: 20 m3/h onwards
- Up to 40 % water savings compared to Open Loop Cooling Tower
- Up to 60 % Lower power consumption than Adiabatic Cooling towers
- Low Maintenance Costs
- Lesser environmental impact due to the reduction of water loss.

Types : Mixed Flow, Counter Flow, Hybrid

Case Study-Closed Loop Cooling Tower for a Chemical Major

A chemical plant faced significant challenges with its traditional open-loop cooling system, including high water consumption, scale and corrosion issues, and increasing maintenance costs

Solution

With environmental regulations tightening on water usage and waste discharge, the plant decided to implement a closed-loop cooling tower system. This solution reduced direct exposure to environmental factors, minimized water loss, and utilized corrosion-resistant materials along with anti-scaling technologies to enhance system durability.

Result: The plant reduced water usage by 30%, along with maintenance costs, improved efficiency, lower operational costs and ensuring regulatory compliance

THERMAX

Solutions

Conserving Resources, Preserving the Future.

THERMAX

Steam-Product Basket

Why Thermax Steam Products?

How our products, solutions and services benefit our end users ?

•

- Improving
 - Product quality
 - Production output
 - Efficiency
 - Plant monitoring
 - Profitability
- Meeting
 - Statutory rules/regulations
 - Industry standards
 - H&S requirements

- Reducing
 - Energy use and costs
 - Water use and costs
 - CO2 emissions
 - Waste
 - Production times
 - Maintenance downtime

Product Install base

Thank You!

